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Abstract

The aim of the present paper is two-fold. First we describe the Lagrangian dynamics of a recently
proposed new class of lightlike p-branes and their interactions with bulk space-time gravity and electro-
magnetism in a self-consistent manner. Next, we discuss the role of lightlike branes as natural candidates
for wormhole “throats” and exemplify the latter by presenting an explicit construction of a new type
of asymmetric wormhole solution where the lightlike brane connects a “right” universe with Reissner-
Nordström geometry to a “left” Bertotti-Robinson universe with two compactified space dimensions.

Keywords: traversable wormholes; non-Nambu-Goto lightlike branes; dynamical brane tension; black hole’s horizon

“straddling”

1 Introduction

Lightlike branes (LL-branes for short) play an in-
creasingly significant role in general relativity and
modern non-perturbative string theory. Mathemat-
ically they represent singular null hypersurfaces in
Riemannian space-time which provide dynamical de-
scription of various physically important cosmological
and astrophysical phenomena such as:

(i) Impulsive lightlike signals arising in cata-
clysmic astrophysical events (supernovae, neutron
star collisions) [1];

(ii) Dynamics of horizons in black hole physics –
the so called “membrane paradigm” [2];

(iii) The thin-wall approach to domain walls cou-
pled to gravity [3, 4, 5].

More recently, the relevance of LL-branes in the
context of non-perturbative string theory has also
been recognized, specifically, as the so called H-
branes describing quantum horizons (black hole and
cosmological) [6], as Penrose limits of baryonic D-
branes [7], etc (see also Refs.[8]).

A characteristic feature of the formalism for LL-
branes in the pioneering papers [3, 4, 5] in the con-
text of gravity and cosmology is that they have been
exclusively treated in a “phenomenological” manner,
i.e., without specifying an underlying Lagrangian dy-
namics from which they may originate. As a par-
tial exception, in a more recent paper [9] brane ac-
tions in terms of their pertinent extrinsic geome-
try have been proposed which generically describe

non-lightlike branes, whereas the lightlike branes are
treated as a limiting case.

On the other hand, in the last few years we have
proposed in a series of papers [10, 11, 12, 13] a new
class of concise manifestly reparametrization invari-
ant world-volume Lagrangian actions, providing a
derivation from first principles of the LL-brane dy-
namics. The following characteristic features of the
new LL-branes drastically distinguish them from or-
dinary Nambu-Goto branes:

(a) They describe intrinsically lightlike modes,
whereas Nambu-Goto branes describe massive ones.

(b) The tension of the LL-brane arises as an addi-
tional dynamical degree of freedom, whereas Nambu-
Goto brane tension is a given ad hoc constant. The
latter characteristic feature significantly distinguishes
our LL-brane models from the previously proposed
tensionless p-branes (for a review, see Ref.[14]). The
latter rather resemble p-dimensional continuous dis-
tributions of independent massless point-particles
without cohesion among the latter.

(c) Consistency of LL-brane dynamics in a spher-
ically or axially symmetric gravitational background
of codimension one requires the presence of an event
horizon which is automatically occupied by the LL-
brane (“horizon straddling” according to the termi-
nology of Ref.[4]).

(d) When the LL-brane moves as a test brane in
spherically or axially symmetric gravitational back-
grounds its dynamical tension exhibits exponential
“inflation/deflation” time behavior [11] – an effect

1



similar to the “mass inflation” effect around black
hole horizons [15].

An intriguing novel application of LL-branes
as natural self-consistent gravitational sources for
wormhole space-times has been developed in a series
of recent papers [12, 13, 16, 17].

Before proceeding let us recall that the concept of
“wormhole space-time” was born in the classic work
of Einstein and Rosen [18], where they considered
matching along the horizon of two identical copies
of the exterior Schwarzschild space-time region (sub-
sequently called Einstein-Rosen “bridge”). Another
corner stone in wormhole physics is the seminal work
of Morris and Thorne [19], who studied for the first
time traversable Lorentzian wormholes.

In what follows, when discussing wormholes we
will have in mind the physically important class of
“thin-shell” traversable Lorentzian wormholes first
introduced by Visser [20, 21]. For a comprehensive
review of wormhole space-times, see Refs.[21, 22].

In our earlier work [12, 13, 16, 17] we have con-
structed various types of wormhole solutions in self-
consistent systems of bulk gravity and bulk gauge
fields (Maxwell and Kalb-Ramond) coupled to LL-
branes where the latter provide the appropriate stress
energy tensors, electric currents and dynamically
generated space-varying cosmological constant terms
consistently derived from well-defined world-volume
LL-brane Lagrangian actions.

The original Einstein-Rosen “bridge” manifold
[18] appears as a particular case of the construction
of spherically symmetric wormholes produced by LL-
branes as gravitational sources occupying the worm-
hole throats (Refs.[16, 13]). Thus, we are lead to
the important conclusion that consistency of Einstein
equations of motion yielding the original Einstein-
Rosen “bridge” as well-defined solution necessarily
requires the presence of LL-brane energy-momentum
tensor as a source on the right hand side.

More complicated examples of spherically and ax-
ially symmetric wormholes with Reissner-Nordström
and rotating cylindrical geometry, respectively, have
been explicitly constructed via LL-branes in Refs.[12,
13]. Namely, two copies of the exterior space-time re-
gion of a Reissner-Nordström or rotating cylindrical
black hole, respectively, are matched via LL-brane
along what used to be the outer horizon of the re-
spective full black hole space-time manifold. In this
way one obtains a wormhole solution which combines
the features of the Einstein-Rosen “bridge” on the
one hand (with wormhole throat at horizon), and the
features of Misner-Wheeler wormholes [23], i.e., ex-
hibiting the so called “charge without charge” phe-

nomenon.
Recently the results of Refs.[12, 13] have been

extended to the case of asymmetric wormholes, de-
scribing two “universes” with different spherically
symmetric geometries of black hole type connected
via a “throat” materialized by the pertinent grav-
itational source – an electrically charged LL-brane,
sitting on their common horizon. As a result of
the well-defined world-volume LL-brane dynamics
coupled self-consistently to gravity and bulk space-
time gauge fields, it creates a “left universe” com-
prising the exterior Schwarzschild-de-Sitter space-
time region beyond the Schwarzschild horizon and
where the cosmological constant is dynamically gen-
erated, and a “right universe” comprising the ex-
terior Reissner-Nordström region beyond the outer
Reissner-Nordström horizon with dynamically gener-
ated Coulomb field-strength. Both “universes” are
glued together by the LL-brane occupying their com-
mon horizon. Similarly, the LL-brane can dynam-
ically generate a non-zero cosmological constant in
the “right universe”, in which case it connects a
purely Schwarzschild “left universe” with a Reissner-
Nordström-de-Sitter “right universe”.

In the present paper we will further broaden the
application of LL-branes in the context of worm-
hole physics by constructing a new type of worm-
hole solution to Einstein-Maxwell equations describ-
ing a “right universe”, which comprises the exte-
rior Reissner-Nordström space-time region beyond
the outer Reissner-Nordström horizon, connected
through a “throat” materialized by a LL-brane with
a “left universe” being a Bertotti-Robinson space-
time with two compactified spatial dimensions [24]
(see also [25]).

Let us note that previously the junction of a com-
pactified space-time (of Bertotti-Robinson type) to
an uncompactified space-time through a wormhole
has been studied in a different setting using time-
like matter on the junction hypersurface [26]. Also,
in a different context a string-like (flux tube) object
with similar features to Bertotti-Robinson solution
has been constructed [27] which interpolates between
uncompactified space-time regions.

2 World-Volume Formulation
of Lightlike Brane Dynamics

There exist two equivalent dual to each other man-
ifestly reparametrization invariant world-volume La-
grangian formulations of LL-branes [10, 11, 12, 13,
16, 28]. First, let us consider the Polyakov-type for-
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mulation where the LL-brane world-volume action is
given as:

SLL =
∫

dp+1σ Φ
[
−1

2
γabgab + L

(
F 2

)]
. (1)

Here the following notions and notations are used:
(a) Φ is alternative non-Riemannian integration

measure density (volume form) on the p-brane world-
volume manifold:

Φ ≡ 1
(p + 1)!

εa1...ap+1Ha1...ap+1(B) , (2)

Ha1...ap+1(B) = (p + 1)∂[a1Ba2...ap+1] , (3)

instead of the usual
√
−γ. Here εa1...ap+1 is the alter-

nating symbol (ε01...p = 1), γab (a, b = 0, 1, . . ., p) in-
dicates the intrinsic Riemannian metric on the world-
volume, and γ = det ‖γab‖. Ha1...ap+1(B) denotes the
field-strength of an auxiliary world-volume antisym-
metric tensor gauge field Ba1...ap

of rank p. As a
special case one can build Ha1...ap+1 in terms of p+1
auxiliary world-volume scalar fields

{
ϕI

}p+1

I=1
:

Ha1...ap+1 = εI1...Ip+1∂a1ϕ
I1 . . . ∂ap+1ϕ

Ip+1 . (4)

Note that γab is independent of the auxiliary world-
volume fields Ba1...ap or ϕI . The alternative non-
Riemannian volume form (2) has been first intro-
duced in the context of modified standard (non-
lightlike) string and p-brane models in Refs.[29].

(b) Xµ(σ) are the p-brane embedding coordinates
in the bulk D-dimensional space time with bulk Rie-
mannian metric Gµν(X) with µ, ν = 0, 1, . . . , D − 1;
(σ) ≡

(
σ0 ≡ τ, σi

)
with i = 1, . . . , p; ∂a ≡ ∂

∂σa .
(c) gab is the induced metric on world-volume:

gab ≡ ∂aXµ∂bX
νGµν(X) , (5)

which becomes singular on-shell (manifestation of the
lightlike nature, cf. second Eq.(10) below).

(d) L
(
F 2

)
is the Lagrangian density of another

auxiliary (p − 1)-rank antisymmetric tensor gauge
field Aa1...ap−1 on the world-volume with p-rank field-
strength and its dual:

Fa1...ap
= p∂[a1Aa2...ap] , F ∗a =

1
p!

εaa1...ap

√
−γ

Fa1...ap
.

(6)
L

(
F 2

)
is arbitrary function of F 2 with the short-hand

notation: F 2 ≡ Fa1...ap
Fb1...bp

γa1b1 . . . γapbp .
Rewriting the action (1) in the following equiva-

lent form:

S = −
∫

dp+1σ χ
√
−γ

[1
2
γabgab − L

(
F 2

)]
,

χ ≡ Φ√
−γ

(7)

with Φ the same as in (2), we find that the composite
field χ plays the role of a dynamical (variable) brane
tension1.

Let us now consider the equations of motion cor-
responding to (1) w.r.t. Ba1...ap

:

∂a

[1
2
γcdgcd−L(F 2)

]
= 0 → 1

2
γcdgcd−L(F 2) = M ,

(8)
where M is an arbitrary integration constant. The
equations of motion w.r.t. γab read:

1
2
gab − F 2L′(F 2)

[
γab −

F ∗
a F ∗

b

F ∗ 2

]
= 0 , (9)

where F ∗ a is the dual field strength (6). Eqs.(9) can
be viewed as p-brane analogues of the string Virasoro
constraints.

Taking the trace in (9) and comparing with (8)
implies the following crucial relation for the La-
grangian function L

(
F 2

)
: L

(
F 2

)
−pF 2L′

(
F 2

)
+M =

0, which determines F 2 on-shell as certain function of
the integration constant M (8), i.e. F 2 = F 2(M) =
const. Here and below L′(F 2) denotes derivative of
L(F 2) w.r.t. the argument F 2.

The next and most profound consequence of
Eqs.(9) is that the induced metric (5) on the world-
volume of the p-brane model (1) is singular on-shell
(as opposed to the induced metric in the case of or-
dinary Nambu-Goto branes):

gabF
∗ b ≡ ∂aXµGµν

(
∂bX

νF ∗ b
)

= 0 . (10)

Eq.(10) is the manifestation of the lightlike nature
of the p-brane model (1) (or (7)), namely, the tan-
gent vector to the world-volume F ∗ a∂aXµ is lightlike
w.r.t. metric of the embedding space-time.

Further, the equations of motion w.r.t. world-
volume gauge field Aa1...ap−1 (with χ as defined in
(7) read:

∂[a

(
F ∗

b] χ
)

= 0 . (11)

Finally, the Xµ equations of motion produced by
the (1) read:

∂a

(
χ
√
−γγab∂bX

µ
)

+ χ
√
−γγab∂aXν∂bX

λΓµ
νλ = 0

(12)
where Γµ

νλ = 1
2Gµκ (∂νGκλ + ∂λGκν − ∂κGνλ) is the

Christoffel connection for the external metric.
1The notion of dynamical brane tension has previously appeared in different contexts in Refs.[30].
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Eq.(11) allows us to introduce the dual “gauge”
potential u (dual w.r.t. world-volume gauge field
Aa1...ap−1 (6)) :

F ∗
a = cp

1
χ

∂au , cp = const . (13)

Relation (13) enables us to rewrite Eq.(9) (the light-
like constraint) in terms of the dual potential u in the
form:

γab =
1

2a0
gab −

(2a0)p−2

χ2
∂au∂bu

a0 ≡ F 2L′
(
F 2

) ∣∣
F 2=F 2(M)

= const . (14)

(L′(F 2) denotes derivative of L(F 2) w.r.t. the argu-
ment F 2). From (13) we obtain the relation:

χ2 = −(2a0)p−2γab∂au∂bu , (15)

and the Bianchi identity ∇aF ∗ a = 0 becomes:

∂a

( 1
χ

√
−γγab∂bu

)
= 0 . (16)

It is straightforward to prove that the system of
equations (12), (16) and (15) for (Xµ, u, χ), which are
equivalent to the equations of motion (8)–(11),(12)
resulting from the original Polyakov-type LL-brane
action (1), can be equivalently derived from the fol-
lowing dual Nambu-Goto-type world-volume action:

SNG = −
∫

dp+1σ T

√∣∣∣∣ det ‖gab − ε
1

T 2
∂au∂bu‖

∣∣∣∣ ,

(17)
with ε = ±1. Here again gab indicates the in-
duced metric on the world-volume (5) and T is dy-
namical variable tension simply proportional to χ
(χ2 = (2a0)p−1T 2with a0 as in (14)). The choice of
the sign in (17) does not have physical effect because
of the non-dynamical nature of the u-field.

Henceforth we will stick to the Polyakov-type for-
mulation of world-volume LL-brane dynamics since
within this framework one can add in a natural way
[10, 11, 12] couplings of the LL-brane to bulk space-
time MaxwellAµ and Kalb-RamondAµ1...µD−1 gauge
fields (in the case of codimension one LL-branes, i.e.,
for D = (p + 1) + 1):

S̃LL = SLL − q

∫
dp+1σ εab1...bpFb1...bp∂aXµAµ

− β

(p + 1)!

∫
dp+1σ εa1...ap+1∂a1X

µ1 . . . ∂ap+1X
µp+1

×Aµ1...µp+1 (18)

with SLL as in (1). The LL-brane constraint equa-
tions (8)–(9) are not affected by the bulk space-time
gauge field couplings whereas Eqs.(11)–(12) acquire
the form:

∂[a

(
F ∗

b] χL′(F 2)
)

+
q

4
∂aXµ∂bX

νFµν = 0 ; (19)

∂a

(
χ
√
−γγab∂bX

µ
)

+ χ
√
−γγab∂aXν∂bX

λΓµ
νλ

−qεab1...bpFb1...bp
∂aXνFλνGλµ

− β

(p + 1)!
εa1...ap+1∂a1X

µ1 . . . ∂ap+1X
µp+1

×Fλµ1...µp+1G
λµ = 0 . (20)

Here χ is the dynamical brane tension as in (7),
Fµν = ∂µAν − ∂νAµ and

Fµ1...µD
= D∂[µ1Aµ2...µD] = F

√
−Gεµ1...µD

(21)

are the field-strengths of the electromagnetic Aµ and
Kalb-Ramond Aµ1...µD−1 gauge potentials [31].

3 Lightlike Brane Dynamics in
Various Types of Gravita-
tional Backgrounds

World-volume reparametrization invariance allows us
to introduce the standard synchronous gauge-fixing
conditions:

γ0i = 0 (i = 1, . . . , p) , γ00 = −1 . (22)

Also, we will use a natural ansatz for the “elec-
tric” part of the auxiliary world-volume gauge field-
strength (6):

F ∗i = 0 (i = 1, . . ., p) , i.e. F0i1...ip−1 = 0 , (23)

meaning that we choose the lightlike direction in
Eq.(10) to coincide with the brane proper-time direc-
tion on the world-volume (F ∗ a∂a ∼ ∂τ ). The Bianchi
identity (∇aF ∗ a = 0) together with (22)–(23) and
the definition for the dual field-strength in (6) imply:

∂τγ(p) = 0 where γ(p) ≡ det ‖γij‖ . (24)

Taking into account (22)–(23), Eqs.(9) acquire the
following gauge-fixed form (recall definition of the in-
duced metric gab (5)):

g00 ≡
.

X
µ
Gµν

.

X
ν
= 0 , g0i = 0 , gij−2a0 γij = 0 ,

(25)
where a0 is the same constant as in (14).
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3.1 Spherically Symmetric Back-
grounds

Here we will be interested in static spherically sym-
metric solutions of Einstein-Maxwell equations (see
Eqs.(35)–(36) below). We will consider the following
generic form of static spherically symmetric metric:

ds2 = −A(η)dt2 +
dη2

A(η)
+ C(η)hij(~θ)dθidθj , (26)

or, in Eddington-Finkelstein coordinates [32] (dt =
dv − dη

A(η) ) :

ds2 = −A(η)dv2 + 2dv dη + C(η)hij(~θ)dθidθj . (27)

Here hij indicates the standard metric on the sphere
Sp. The radial-like coordinate η will vary in general
from −∞ to +∞.

We will consider the simplest ansatz for the LL-
brane embedding coordinates:

X0 ≡ v = τ , X1 ≡ η = η(τ)
Xi ≡ θi = σi (i = 1, . . . , p) . (28)

Now, the LL-brane equations (25) together with (24)
yield:

−A(η)+2
.
η= 0 , ∂τC =

.
η ∂ηC

∣∣
η=η(τ)

= 0 . (29)

First, we will consider the case of C(η) as non-
trivial function of η (i.e., proper spherically symmet-
ric space-time). In this case Eqs.(29) imply:

.
η= 0 → η(τ) = η0 = const , A(η0) = 0 . (30)

Eq.(30) tells us that consistency of LL-brane dynam-
ics in a proper spherically symmetric gravitational
background of codimension one requires the latter to
possess a horizon (at some η = η0), which is auto-
matically occupied by the LL-brane (“horizon strad-
dling” according to the terminology of Ref.[4]). Sim-
ilar property – “horizon straddling”, has been found
also for LL-branes moving in rotating axially sym-
metric (Kerr or Kerr-Newman) and rotating cylin-
drically symmetric black hole backgrounds [12, 13].

With the embedding ansatz (28) and assuming
the bulk Maxwell field to be purely electric static one
(F0η = Fvη 6= 0, the rest being zero; this is the rel-
evant case to be discussed in what follows), Eq.(19)
yields the simple relation: ∂iχ = 0 , i.e. χ = χ(τ).
Further, the only non-trivial contribution of the sec-
ond order (w.r.t. world-volume proper time deriva-
tive) Xµ-equations of motion (20) arises for µ = v,
where the latter takes the form of an evolution equa-
tion for the dynamical tension χ(τ). In the case of ab-
sence of couplings to bulk space-time gauge fields, the

latter yields exponentional “inflation”/“deflation” at
large times for the dynamical LL-brane tension:

χ(τ) = χ0 exp
{
−τ

(1
2
∂ηA + pa0∂ηC

)
η=η0

}
, (31)

χ0 = const. Similarly to the “horizon straddling”
property, exponential “inflation”/“deflation” for the
LL-brane tension has also been found in the case of
test LL-brane motion in rotating axially symmetric
and rotating cylindrically symmetric black hole back-
grounds (for details we refer to Refs.[11, 12, 13]). This
phenomenon is an analog of the “mass inflation” ef-
fect around black hole horizons [15].

3.2 Product-Type Gravitational
Backgrounds: Bertotti-Robinson
Space-Time

Consider now the case C(η) = const in (27), i.e.,
the corresponding space-time manifold is of product
type Σ2 × Sp. A physically relevant example is the
Bertotti-Robinson [24, 25] space-time in D = 4 (i.e.,
p = 2) with (non-extremal) metric (cf.[25]) :

ds2 = r2
0

[
−η2dt2 +

dη2

η2
+ dθ2 + sin2 θdϕ2

]
, (32)

or in Eddington-Finkelstein (EF) form (dt = 1
r2
0
dv −

dη
η2 ):

ds2 = −η2

r2
0

dv2 +2dvdη+r2
0

[
dθ2 + sin2 θdϕ2

]
. (33)

At η = 0 the Bertotti-Robinson metric (32) (or (33))
possesses a horizon. Further, we will consider the case
of Bertotti-Robinson universe with constant electric
field Fvη = ± 1

2r0
√

π
. In the present case the sec-

ond Eq.(29) is trivially satisfied whereas the first one

yields: η(τ) = η(0)
(
1 − τ η(0)

2r2
0

)−1

. In particular, if
the LL-brane is initially (at τ = 0) located on the
Bertotti-Robinson horizon η = 0, it will stay there
permanently.

4 Self-Consistent Wormhole
Solutions Produced By
Lightlike Branes

4.1 Lagrangian Formulation of Bulk
Gravity-Matter System Coupled
to Lightlike Brane

Let us now consider elf-consistent bulk Einstein-
Maxwell-Kalb-Ramond system coupled to a charged
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codimension-one lightlike p-brane (i.e., D = (p+1)+
1). It is described by the following action:

S =
∫

dDx
√
−G

[
R(G)
16π

− 1
4
FµνFµν

− 1
D!2

Fµ1...µD
Fµ1...µD

]
+ S̃LL . (34)

Here Fµν and Fµ1...µD
are the Maxwell and Kalb-

Ramond field-strengths (21). The last term on the
r.h.s. of (34) indicates the reparametrization invari-
ant world-volume action (18) of the LL-brane coupled
to the bulk space-time gauge fields.

The pertinent Einstein-Maxwell-Kalb-Ramond
equations of motion derived from the action (34) read:

Rµν −
1
2
GµνR = 8π

(
T (EM)

µν + T (KR)
µν + T (brane)

µν

)
,

(35)

∂ν

(√
−GFµν

)
+ q

∫
dp+1σ δ(D)

(
x−X(σ)

)
× εab1...bpFb1...bp

∂aXµ = 0 , (36)

ενµ1...µp+1∂νF − β

∫
dp+1σ δ(D)(x−X(σ))

× εa1...ap+1∂a1X
µ1 . . . ∂ap+1X

µp+1 = 0 , (37)

where in the last equation we have used the last rela-
tion (21). The explicit form of the energy-momentum
tensors read:

T (EM)
µν = FµκFνλGκλ −Gµν

1
4
FρκFσλGρσGκλ , (38)

T (KR)
µν =

1
(D − 1)!

[
Fµλ1...λD−1Fν

λ1...λD−1

− 1
2D

GµνFλ1...λD
Fλ1...λD

]
= −1

2
F2Gµν , (39)

T (brane)
µν = −GµκGνλ

∫
dp+1σ

δ(D)
(
x−X(σ)

)
√
−G

× χ
√
−γγab∂aXκ∂bX

λ , (40)

where the brane stress-energy tensor is straightfor-
wardly derived from the world-volume action (1) (or,
equivalently, (7); recall χ ≡ Φ√

−γ
is the variable brane

tension).
Using again the embedding ansatz (28) together

with (30) as well as (22)–(25), the Kalb-Ramond
equations of motion (37) reduce to:

∂ηF + βδ(η − η0) = 0 (41)

implying

F = F(+)θ(η − η0) + F(−)θ(η0 − η)
F(±) = const , F(−) −F(+) = β (42)

Therefore, a space-time varying non-negative cosmo-
logical constant is dynamically generated in both ex-
terior and interior regions w.r.t. the horizon at η = η0

(cf. Eq.(39)): Λ(±) = 4πF2
(±). Hereafter we will dis-

card the presence of the Kalb-Ramond gauge field
and, correspondingly, there will be no dynamical gen-
eration of cosmological constant.

4.2 Asymmetric Wormholes

We will consider in what follows the case of D = 4-
dimensional bulk space-time and, correspondingly,
p = 2 for the LL-brane. For further simplification
of the numerical constant factors we will choose the
following specific (“wrong-sign” Maxwell) form for
the Lagrangian of the auxiliary non-dynamical world-
volume gauge field (6): L(F 2) = 1

4F 2 → a0 = M ,
where again a0 is the constant defined in (14) and M
denotes the original integration constant in Eqs.(8).

We will seek a self-consistent solution of the equa-
tions of motion of the coupled Einstein-Maxwell-
LL-brane system (Eqs.(35)–(36) and (8)–(9), (19)–
(20)) describing an asymmetric wormhole space-time
with spherically symmetric geometry. The general
form of asymmetric wormhole metric (in Eddington-
Finkelstein coordinates) reads:

ds2 = −A(η)dv2 + 2dvdη + C(η)
[
dθ2 + sin2 θdϕ2

]
,

(43)

A(0) = 0 ( “throat′′ at η0 = 0 )
A(η) > 0 for all η 6= 0 . (44)

The radial-like coordinate η varies from −∞ to +∞
and the metric coefficients A(η) and C(η) are contin-
uous but not necessarily differentiable w.r.t. η at the
wormhole “throat” η = 0. We will require:

∂ηA
∣∣
η→+0

≡ ∂ηA
∣∣
+0

> 0 , ∂ηA
∣∣
η→−0

≡ ∂ηA
∣∣
−0

> 0 .

(45)
Einstein equations (35) yield for the metric (43):

∂ηA
∣∣
+0
−∂ηA

∣∣
−0

= −16π χ

∂η lnC
∣∣
+0
−∂η lnC

∣∣
−0

= −4π χ

a0
. (46)

For the LL-brane equations of motion we use
again the embedding (28) resulting in the LL-brane
“horizon straddling” (30). On the other hand, the
second order Eqs.(20) contain “force” terms (the geo-
desic ones involving the Christoffel connection coef-
ficients as well as those coming from the LL-brane
coupling to the bulk Maxwell gauge field) which dis-
play discontinuities across the “throat” at η = 0 occu-
pied by the LL-brane due to the delta-function terms
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in the respective bulk space-time Einstein-Maxwell
Eqs.(35)–(36) (now η0 ≡ 0). The discontinuity prob-
lem is resolved following the approach in Ref.[3] (see
also the regularization approach in Ref.[33], Appen-
dix A) by taking mean values of the “force” terms
across the discontinuity at η = 0. Furthermore, we
will require χ = const (independent of the LL-brane
proper time τ) for consistency with the matching re-
lations (46). Thus, in the case of the LL-brane em-
bedding (28) the Xµ-equation (20) for µ = v with
D = 4 , p = 2, no Kalb-Ramond coupling, i.e., F = 0,
and using the gauge-fixing (22), becomes:

χ
[1
4

(
∂ηA

∣∣
+0

+∂ηA
∣∣
−0

)
+ a0

(
∂η lnC

∣∣
+0

+

+∂η lnC
∣∣
−0

)]
− q

√
2a0

[
Fvη

∣∣
+0

+Fvη

∣∣
−0

]
= 0 (47)

In the present wormhole solution we will take
“left” Bertotti-Robinson “universe” with:

A(η) =
η2

r2
0

, C(η) = r2
0 , Fvη = ± 1

2
√

π r0

(48)
for η < 0, and “right” Reissner-Nordström “universe”
with:

A(η) ≡ ARN(r0 + η) = 1− 2m

r0 + η
+

Q2

(r0 + η)2
,

C(η) = (r0 + η)2 , Fvη ≡ Fvr

∣∣
RN

=
Q√

4π(r0 + η)2
,

(49)
for η > 0, and

A(0) ≡ ARN(r0) = 0 , ∂ηA
∣∣
+0
≡ ∂rARN

∣∣
r=r0

> 0 (50)

where Fvη’s are the respective Maxwell field-

strengths and where Q = r0

[√
8π
a0

qr0 ± 1
]

is de-
termined from the discontinuity of Fvη in Maxwell
equations (36) across the charged LL-brane. Here we
have used the standard coordinate notations for the
Reissner-Nordström metric coefficients and Coulomb
field strength:

ARN(r) = 1− 2m

r
+

Q2

r2
, Fvr

∣∣
RN

=
Q√
4πr2

.

(51)
Since obviously both Bertotti-Robinson (48) and

Reissner-Nordström (49) metrics do satisfy the “vac-
uum” Einstein-Maxwell equations (Eqs.(35)–(36)
without the LL-brane stress-energy tensor) it remains
to check the matching of both metrics at the “throat”
η = 0 (the location of the LL-brane) according to

Eqs.(46)–(47). In this case the latter equations give:

∂rARN

∣∣
r=r0

= −16π χ , ∂r ln r2
∣∣
r=r0

= −4π

a0
χ (52)

χ
[1
4
∂rARN

∣∣
r=r0

+a0∂r ln r2
∣∣
r=r0

]
−2q2 ∓ q

r0

√
2a0

π
= 0 . (53)

From (52)–(53) we get:

r0 =
a0

2π|χ|
, m =

a0

2π|χ|
(1− 4a0) , (54)

implying that the dynamical LL-brane tension χ
must be negative, thus identifying the LL-brane
as “exotic matter” [19, 21]. Further we obtain a
quadratic equation for |χ|:

χ2 +
q2

4π
± q

2
√

2π a0
|χ| = 0 , (55)

which dictates that we have to choose the sign of
q to be opposite to the sign in the expression for
the Bertotti-Robinson constant electric field (last
Eq.(48)). There are two positive solutions for |χ|:

|χ| = |q|
4
√

2π a0

(
1±

√
1− 8a0

)
for a0 < 1/8 .

(56)
Using (54) and (56) the expression for Q2 reads:

Q2 =
a2
0

4π2χ2
(1− 8a0) =

8a3
0

π q2

1− 8a0(
1±

√
1− 8a0

)2

(57)
Thus, we have constructed a solution to Einstein-

Maxwell equations (35)–(36) in D = 4 describing a
wormhole space-time manifold consisting of a “left”
Bertotti-Robinson universe with two compactified
space dimensions and a “right” Reissner-Nordström
universe connected by a “throat” materialized by a
LL-brane. The “throat” is a common horizon for
both universes where for the “right” universe it is the
external Reissner-Nordström horizon. All wormhole
parameters, including the dynamical LL-brane ten-
sion, are determined in terms of the surface charge
density q of the LL-brane (cf. Eq.(18)) and the in-
tegration constant a0 (14) characterizing LL-brane
dynamics in a bulk gravitational field.

5 Conclusions. Travel to Com-
pactland Through a Worm-
hole

In this work we have explored the use of
(codimension-one) LL-branes for construction of new
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asymmetric wormhole solutions of Einstein-Maxwell
equations. We have put strong emphasize on the cru-
cial properties of the dynamics of LL-branes interact-
ing with gravity and bulk space-time gauge fields:

(i) “Horizon straddling” – automatic position of
the LL-brane on (one of) the horizon(s) of the bulk
space-time geometry;

(ii) Intrinsic nature of the LL-brane tension as
an additional dynamical degree of freedom unlike the
case of standard Nambu-Goto p-branes;

(iii) The LL-brane stress-energy tensor is system-
atically derived from the underlying LL-brane La-
grangian action and provides the appropriate source
term on the r.h.s. of Einstein equations to enable
the existence of consistent non-trivial wormhole solu-
tions;

(iv) Electrically charged LL-branes naturally pro-
duce asymmetric wormholes with the LL-brane itself
materializing the wormhole “throat” and uniquely de-
termining the pertinent wormhole parameters.

Finally, let us point out that the above asym-
metric wormhole connecting Reissner-Nordström uni-
verse with a Bertotti-Robinson universe through a
lightlike hypersurface occupied by a LL-brane is tra-
versable w.r.t. the proper time of a traveling ob-
server. The latter property is similar to the proper
time traversability of other symmetric and asymmet-
ric wormholes with LL-brane sitting on the “throat”
[12, 13, 16, 17]. Indeed, let us consider test particle
(“traveling observer”) dynamics in the asymmetric
wormhole background given by (48)–(49), which is
described by the action:

Sparticle =
1
2

∫
dλ

[1
e

.
x

µ .
x

ν
Gµν − em2

0] . (58)

Using energy E and orbital momentum J conser-
vation and introducing the proper world-line time s
( ds

dλ = em0), the “mass-shell” equation (the equation
w.r.t. the “einbein” e produced by the action (58))
yields:(

dη

ds

)2

+Veff(η) =
E2

m2
0

, Veff(η) ≡ A(η)
(
1+

J 2

m2
0C(η)

)
(59)

with A(η), C(η) – the same metric coefficients as in
(48)–(50).

For generic values of the parameters the effective
potential in the Bertotti-Robinson universe (48) (i.e.,
for η < 0) has harmonic-oscillator-type form. There-
fore, a traveling observer starting in the Reissner-
Nordström universe (49) (i.e., at some η > 0) and
moving “radially” along the η-direction towards the
horizon, will cross the wormhole “throat” (η = 0)

within finite interval of his/her proper time, then will
continue into the Bertotti-Robinson universe subject
to harmonic-oscillator deceleration force, will reverse
back at the turning point and finally will cross the
“throat” back into the Reissner-Nordström universe.

Let us stress that, as in the case of the previ-
ously constructed symmetric and asymmetric worm-
holes via LL-branes sitting on their “throats” [12, 13,
16, 17], the present Reissner-Nordström-to-Bertotti-
Robinson wormhole is not traversable w.r.t. the “lab-
oratory” time of a static observer in either universe.

Acknowledgments

E.N. and S.P. are supported by Bulgarian NSF grant
DO 02-257. E.G. thanks the astrophysics and cos-
mology group at PUCV, Chile, for hospitality. Also,
all of us acknowledge support of our collaboration
through the exchange agreement between the Ben-
Gurion University of the Negev and the Bulgarian
Academy of Sciences.

References

[1] C. Barrabés and P. Hogan, “Singular Null-
Hypersurfaces in General Relativity” (World Sci-
entific, Singapore, 2004).

[2] K. Thorne, R. Price and D. Macdonald (Eds.),
“Black Holes: The Membrane Paradigm” (Yale
Univ. Press, New Haven, CT, 1986).

[3] W. Israel, Nuovo Cim. B44, 1 (1966); erratum,
Nuovo Cim. B48, 463 (1967).

[4] C. Barrabés and W. Israel, Phys. Rev. D43,
1129 (1991).

[5] T. Dray and G. ‘t Hooft, Class. Quantum Grav.
3, 825 (1986).

[6] I. Kogan and N. Reis, Int. J. Mod. Phys. A16,
4567 (2001) [hep-th/0107163].

[7] D. Mateos and S. Ng, JHEP 0208, 005 (2002)
[hep-th/0205291].

[8] J. Harvey, P. Kraus and F. Larsen, Phys. Rev.
D63, 026002 (2001) [hep-th/0008064]; D. Ma-
teos, T. Mateos and P.K. Townsend, JHEP 0312
(2003) 017 [hep-th/0309114]; A. Bredthauer, U.
Lindström, J. Persson and L. Wulff, JHEP 0402
(2004) 051 [hep-th/0401159].

[9] C. Barrabés and W. Israel, Phys. Rev. D71,
064008 (2005) [gr-qc/0502108].

8



[10] E. Guendelman, A. Kaganovich, E. Nissimov
and S. Pacheva, Phys. Rev. D72, 0806011
(2005) [hep-th/0507193]; Fortschr. der Physik
55, 579 (2007) [hep-th/0612091]; in “Fourth
Internat. School on Modern Math. Physics”,
eds. B. Dragovich and B. Sazdovich (Belgrade
Inst. Phys. Press, Belgrade, 2007), p. 215 [hep-
th/0703114]; in “Lie Theory and Its Appli-
cations in Physics 07”, eds. V. Dobrev and
H. Doebner (Heron Press, Sofia, 2008), p. 79
[arxiv:0711.1841[hep-th]].

[11] E. Guendelman, A. Kaganovich, E. Nissi-
mov and S. Pacheva, Centr. Europ. Journ.
Phys. 7, 668 (2009) [arxiv:0711.2877[hep-th]]; in
“Fifth Summer School in Modern Mathemat-
ical Physics”, eds. B. Dragovich and Z. Ra-
kic (Belgrade Inst. Phys. Press, Belgrade, 2009)
[arxiv:0810.5008[hep-th]].

[12] E. Guendelman, A. Kaganovich, E. Nissimov
and S. Pacheva, Phys. Lett. 673B, 288 (2009)
[arxiv:0811.2882[hep-th]]; Fortschr. der Phys.
57, 566 (2009) [arxiv:0901.4443[hep-th]].

[13] E. Guendelman, A. Kaganovich, E. Nissimov
and S. Pacheva, Int. J. Mod. Phys. A25, 1405
(2010) [arxiv:0904.0401[hep-th]].

[14] U. Lindström and H. Svendsen, Int. J. Mod.
Phys. A16, 1347 (2001) [arxiv:hep-th/0007101].

[15] W. Israel and E. Poisson, Phys. Rev. Lett. 63,
1663 (1989); Phys. Rev. D41, 1796 (1990).

[16] E. Guendelman, A. Kaganovich, E. Nissimov
and S. Pacheva, Phys. Lett. 681B, 457 (2009)
[arxiv:0904.3198[hep-th]]

[17] E. Guendelman, A. Kaganovich, E. Nissi-
mov and S. Pacheva, Asymmetric Worm-
holes via Electrically Charged Lightlike Branes,
arxiv:0911.0940[hep-th], to appear in “Lie The-
ory and Its Applications in Physics VIII”, eds.
H.-D. Doebner and V. Dobrev, Heron Press,
Sofia (2010).

[18] A. Einstein and N. Rosen, Phys. Rev. 43, 73
(1935).

[19] M. Morris and K. Thorne, Am. J. Phys. 56
(1988) 395; M. Morris, K. Thorne and U. Yurt-
sever, Phys. Rev. Lett. 61, 1446 (1988).

[20] M. Visser, Phys. Rev. D39, 3182 (1989); Nucl.
Phys. B328, 203 (1989).

[21] M. Visser, “Lorentzian Wormholes. From Ein-
stein to Hawking” (Springer, Berlin, 1996).

[22] J. Lemos, F. Lobo and S. de Oliveira, Phys.
Rev. D68, 064004 (2003) [gr-qc/0302049]; S.
Sushkov, Phys. Rev. D71, 043520 (2005) [gr-
qc/0502084]; F. Lobo, Exotic Solutions in Gen-
eral Relativity: Traversable Wormholes and
“Warp Drive” Spacetimes , arxiv:0710.4474[gr-
qc].

[23] C. Misner and J. Wheeler, Ann. of Phys. 2, 525-
603 (1957).

[24] B. Bertotti, Phys. Rev. D116, 1331 (1959); I.
Robinson, Bull. Akad. Pol., 7 (1959) 351.

[25] A.S. Lapedes, Phys. Rev. D17, 2556 (1978).

[26] E. Guendelman, Gen. Rel. Grav. 23 (1991) 1415.

[27] V. Dzhunushaliev, Gen. Rel. Grav. bf 35 (2003)
1481 [gr-qc/0301046].

[28] E. Guendelman, A. Kaganovich, E. Nissimov
and S. Pacheva, Int. J. Mod. Phys. A25, 1571
(2010) [arxiv:0908.4195[hep-th]].

[29] E. Guendelman, Class. Quantum Grav. 17, 3673
(2000); Phys. Rev. D63, 046006 (2001).

[30] P. Townsend, Phys. Lett. 277B, 285 (1992);
E. Bergshoeff, L. London and P. Townsend,
Class. Quantum Grav. 9, 2545 (1992) [hep-
th/9206026]; J. de Azcarraga, J. Izquierdo and
P. Townsend, Phys. Rev. D45, R3321 (1992).

[31] A. Aurilia, H. Nicolai and P.K. Townsend, Nucl.
Phys. B176, 509 (1980); A. Aurilia, Y. Taka-
hashi and P.K. Townsend, Phys. Lett. 95B, 265
(1980).

[32] A. Eddington, Nature, 113, 192 (1924); D.
Finkelstein, Phys. Rev. D110, 965 (1958).

[33] S. Blau, E. Guendelman and A. Guth, Phys.
Rev. D35, 1747 (1987).

9


	Invertis Journal of Science & Technology, Volume 3, No.2 , April- June 2010.pdf
	09123712_BR-WH_2col.pdf

